

ARCHITECTURE RECONSTRUCTION & DOCUMENTATION

Ashish S hrestha | as3828@drexel.edu

1. INTRODUCTION

Discord is a propriety VoIP solution built with

gamers in mind. Although, primary designed

for voice chat, Discord offers a lot more. As all

other VoIP application Discord offers friend list,

private chat, voice call, group chat, group voice

call, video calling and screen sharing

capabilities. But, what sets discord apart from

the rest is its sense of community.

Unlike traditional VoIP appications, Discord

offers a dedicated private space for people to

socialize and build connections. Discord calls

this space a server, also called “guilds”. People

can join any server on invitation. A server hosts

channels, and channels can be of two types –

text and voice. Text channels are dedicated

spaces to text chat on a particular channel topic

with guild members. While voice channels are

like chat rooms, where people are free to

connect and speak at anytime.

As stated previously, Discord was designed

with gamers in mind, but the application has

grown to a stage where it is now a hybrid of

S lack and TeamS peak, allowing for many non-

gaming communities to set up shop. Anything

from anime, science and technology, and

education to helpdesk chats can now be found

on Discord.

2. DISCORD OVERVIEW

Discord architecture is close to that of S lack

than to that of Team S peak. L ike S lack, Discord

uses the concept of channel for text chats,

where server admins can create channels as

dedicated space for certain topics. Discord takes it

a step further with voice channels. Voice channel

like text channel allows members to easily join in

on the conversation, hence any disruption due to

new member joining in or leaving is non-existent.

i. Server

Additionally, like S lack, guilds are hosted by

Discord on their own server. Server admins can

choose which geographical region they want the

guild to be hosted from, but the eventual control

of all content is with Discord. TeamS peak on the

other hand provides TeamSpeak server for users

to host themselves. The advantage Discord has

over TeamS peak are 100% uptime, low latency,

and preservation of chat history as guild don’t

have to deal with local setup issues.

But all this also results in giving up data rights to

Discord. This raises privacy issues, as the creators

are not the true owners of the content they post,

and there are no guarantees that Discord will not

look through it. Discord does have URL sniffers

built in to channels and they cannot be turned off.

These URL sniffers looks up posted URLs and

provides short description about its content to the

users. A very helpful feature, but one that proves

that Discord does look up what one posts. Discord

has also banned certain kinds of content on their

platform, which further affirms that communities

are not immune to Discord prying eyes.

Even than privacy on Discord is far superior to that

of Facebook, as user identity, in most cases, don’t

correspond to real life identities. Anonymity and

privacy has also allowed Discord to be used by alt-

right groups to plan and organize rallies.

mailto:as3828@drexel.edu

Rich Presence provides detailed game stats and

integrations, allowing members to not only view

what game their friends are in, but also view what

stage of the game they are in and their game stats.

Additionally, with R ich Presence, friends can also

spectate the game.

Discord Application enables developers to create

RESTful web services based applications that

provide customs features on guild servers.

Applications can also act as administrators,

automating the process of moderation.

Discord Bot is an additional feature provided

through Discord application, that enables

developers to create interactive bots that can

communicate to users via both text and voice.

Webhooks are also provided on channel level,

which facilitates easy posting through REST calls.

Discord RPC enables developers to control locally

running Discord clients. It is also used by features

such as GameBridge API.

ii. Client

On the client side, Discord covers a vast array

of platforms – Windows, Mac OS , Linux,

Android, iOS and even 100% feature rich web

application.

Discord client, arguably, provides the best chat

experience compared to all other similar

applications. Discord is built on the feeling of

being part of a community, and it shows.

Direct/private messages are essentially hidden

on the top left portion of the screen as it is

almost not meant to be used, while guilds are

front and center, and get all the attention.

iii. Other components

Apart from the main client and server

components, Discord provides additional

features bundled either on the server or client.

Back in 2016, Discord announced GameBridge

API. GameBridge API allows game developers

to directly integrate Discord into their game.

Figure 1. Discord Windows Client UI showing “Hammer & Chisel” Guild

3. TECHNICAL ANALYS IS

Being a propriety and relatively new product,

there are very few technical and architectural

description of Discord. The below mentioned

content is obtained and inferred from the

official Discord Engineering Blog

(https://blog.discordapp.com/tagged/enginee

ring), Discord developer documentation

(https://discordapp.com/developers/docs/intr

o, and official Discord GitHub repository

(https://github.com/discordapp).

i. PC C lient(s)

PC C lient for Discord is written on E lectron

framework. E lectron is a web technology based

application development platform that uses

Chromium and Node.js to build native

application experience for MacOS , Windows

and Linux using HTML, CSS and JavaScript.

Other applications that uses E lectron are S lack

and Atom editor.

Through E lectron, Discord provides automated

client updates via S quirrel Updater. E lectron

also enables Discord to provide native

experiences like UI elements and notification

services. Furthermore, Discord also uses

Electron for crash reporting and content

tracing. Additionally, Discord uses

EventE mitter3, a high-performance event

emitter as a replacement for the default

Node.js EventE mitter.

Apart from being able to provide consistent

experience throughout different platform

(Linux, MacOS and Windows), E lectron

application also runs in a web browser. Due to

this common codebase, Discord is not only able

to support multi-platform but also streamline

development, without needing resources for

each individual platform.

ii. Discord RPC

Discord RPC is also bundled in the client. All

Discord clients have an RPC server running on

localhost that allows control over local Discord

clients. Discord RPC is written in C++ and the

source code is provided on Discord’s Github

repository.

Discord RPC is set up to process web socket

connections and proxy API requests, and enables

direct access and control of the client. Discord

RPC communicates using JavaScript Object

Notation (JSON).

iii. GameBridge S DK

The GameBridge S oftware Development Kit is a

headless, optimized version of Discord

RPC available to game developer as a Dynamic

Link Library (DLL). Once started, it will spin up an

RPC server and relay information about the port

it is running on.

iv. Rich Presence

Rich Presence is a feature from Discord that

allows game developers to surface unique,

interesting, and actionable data inside a Discord

user’s profile when they play. It also enables

features like spectating friend’s game and joining

friend’s game party or server.

 R ich Presence is available as an S DK for C , C++,

Unity and Unreal game engine to game

developers, and it is up to the game developer to

implement it. R ich Presence also uses Discord

RPC.

v. Mobile C lients

Discord again went for a multi-platform

framework for their mobile client for iOS and

Android. Discord mobile C lient uses React Native.

React Native allows development of native

mobile apps using JavaScript and React, enabling

rich mobile UI, rendering it indistinguishable from

an app built using Objective-C or Java.

Additionally, React Native allows for native code

to co-exist - components written in Objective-C ,

Java, or S wift.

https://blog.discordapp.com/tagged/engineering
https://blog.discordapp.com/tagged/engineering
https://discordapp.com/developers/docs/intro
https://discordapp.com/developers/docs/intro
https://github.com/discordapp

React Native runs JavaScript on a background

thread and sends a minimal amount of code to

main thread. Benchmarks show that there is

little performance difference between this and

native iOS apps which are written in Objective-

C or S wift. Frontend developer at Discord,

Fanghao Chen states that they also made use

of a catalog of open source component for

React Native – js.coach.

vi. Server

It is not completely public knowledge on what

comprises of Discord S erver. A few hints from

Discord engineering blog speak about Google

Cloud Platform, and use of Google Firebase

Cloud Messaging service.

Upon further research and studying the

available source code provided by Discord, it

was found that Discord uses E lixir and E rlang.

Elixir is a dynamic, functional language

designed for building scalable and

maintainable applications. Erlang is a

programming language used to build massively

scalable soft real-time systems with

requirements on high availability. It is used in

telecoms, banking, e-commerce, computer

telephony and instant messaging. E lixir

leverages the Erlang VM for its known support

for high concurrency, distribution and fault-

tolerance.

For scaling to millions of push requests per

minute, Discord uses E lixir’s GenS tage.

GenS tage is an E lixir behavior for exchanging

events with back-pressure between E lixir

processes, preventing system bottle-neck and

overload. GenS tage implementation on

Discord uses producer and consumer

architecture, where a push collector acts as a

producer and the pusher to Firebase acts as

consumer. This seems like a better solution

than using dedicated queueing systems like

Kafka which would end up taking more

resources.

vii. Database

Before Discord started gaining huge userbase, it

used a single MongoDB replica set to store

everything on Discord. This was an intentional

design decision, and a temporary one. The

database was structured to be easily migrated

when the company hit scaling/storage issues.

S tudying user pattern and database uses, the

Discord team came up with a list of requirements

for their database of choice - Linear scalability,

automatic failover, low maintenance, proven to

work, predictable performance, not a blob store

and open source.

Cassandra was found to be database that fulfilled

the requirements as nodes could be added to

scale it. Cassandra can also tolerate a loss of

nodes without any impact on the application.

Related data is stored contiguously on disk

providing minimum seeks and easy distribution

around the cluster. Large companies such as

Netflix and Apple have thousands of Cassandra

nodes.

While Cassandra was an apt choice for Discord, it

is not without flaws. Cassandra has eventual

consistency meaning that deletes on Cassandra is

not immediate. Cassandra instead treats delete

as “tombstone” writes. S o, in a scenario where

there are millions of deletes and eventually only

a few data rows left, Cassandra must scan

thorough all these tombstones, effectively

slowing down reads.

Discord “solved” these issues with lowering

tombstone lifespan and adding an additional

query to track and ignore empty buckets.

viii. Indexing

Searching is a big problem when the set is billions

of messages. Discord uses ElasticSearch to solve

this issue. E lasticSearch is a search engine based

on Lucene, which provides distributed, scalable

full-text search via lazily indexing documents.

My previous experience with S olr, and then

eventual migration to E lasticS earch at Dell

Boomi, showed me the greater capability,

performance and scalability of E lasticsearch.

So, did the team at Discord. Although

ElasticSearch supports single document

indexing, it performs better with bulk, so

Discord implemented a queue for bulk feeding.

 ix. Voice

Discord uses VoIP and OPUS codec for relaying

voice data. Opus is a free and open audio codec

with unmatched performance for relaying

speech over the internet.

Discord auto detects internet quality and

adjust bit rate accordingly and dynamically

switches server region to provide the best voice

experience.

 x. Extras

Discord comprise of many more features than

the one listed above.

One of the many small things that user will not

notice is how Discord handles 150 million

images every day. To prevent image loss and IP

address leakage of images posted on Discord,

Discord automatically resizes images using Go

and C++. Discord created its own image resizer

on Go, aptly named Liliput, using C libraries and

OpenCV for compression and FastHttp for

concurrent HTTP communication. Liliput

outperforms pillow-simd package for resizing

which uses x86 SSE instructions.

4. ARCHITECTURE

From the prior studies, Figure 2 shows the

architectural reconstruction of Discord. As all

web services based applications, Discord

follows a client server model. Each of this

model however has custom components

attached to it that enables for unique

experiences only provide by Discord.

5. CONCLUSION

All the technologies and components used by

Discord are well researched decisions and

implementations. Discord has the best voice

quality, making it well-loved by its user

community. The performance numbers and

service provided by Discord shows that the

design decision made by Discord team is

rational and fruitful. If there are any changes to

be made to the components, Discord team has

already been actively searching for newer

solutions, as evident by their post on their

engineering blog.

6. REFRENCES

• Discord Engineering blog -

https://blog.discordapp.com/tagged/e

ngineering

• Discord Developer Documentation -

https://discordapp.com/developers/d

ocs/intro

• Discord Github Repository -

https://discordapp.com/developers/d

ocs/intro

• "Apps Built on E lectron" -

https://electronjs.org/apps?q=discord

• Roose, Kevin (August 15, 2017). "This

Was the Alt-R ight's Favorite Chat App.

Then Came Charlottesville". The New

York Times. Archived from the original

on August 19, 2017. -

https://www.nytimes.com/2017/08/1

5/technology/discord-chat-app-alt-

right.html

https://blog.discordapp.com/tagged/engineering
https://blog.discordapp.com/tagged/engineering
https://discordapp.com/developers/docs/intro
https://discordapp.com/developers/docs/intro
https://discordapp.com/developers/docs/intro
https://discordapp.com/developers/docs/intro
https://electronjs.org/apps?q=discord
https://www.nytimes.com/2017/08/15/technology/discord-chat-app-alt-right.html
https://www.nytimes.com/2017/08/15/technology/discord-chat-app-alt-right.html
https://www.nytimes.com/2017/08/15/technology/discord-chat-app-alt-right.html

SERVER

CLIENT

INTERNET

PUBLIC/PRIVATE API

REST/RPC

VOICE ENGINE

VOIP, OPUS

ElasticSearch

Indexing and Query

Cassandra

Database S torage

MAIN ENGINE

Elixir and E rlangVM

Liliput

Image Resizer Module

OTHER MODULES

MOBILE CLIENTS

React Engine

PC CLIENTS

Electron

Custom C lients

DiscordRPC

WEBHOOKS

REST

USER

Custom C lients

Discord Apps/Bots

Figure 2. Discord Architecture Reconstruction

